Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar.

Identifieur interne : 003371 ( Main/Exploration ); précédent : 003370; suivant : 003372

Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar.

Auteurs : Olga Pechanova [États-Unis] ; Chuan-Yu Hsu ; Joshua P. Adams ; Tibor Pechan ; Lindsay Vandervelde ; Jenny Drnevich ; Sara Jawdy ; Ardeshir Adeli ; Jeffrey C. Suttle ; Amanda M. Lawrence ; Timothy J. Tschaplinski ; Armand Séguin ; Cetin Yuceer

Source :

RBID : pubmed:21114852

Descripteurs français

English descriptors

Abstract

BACKGROUND

Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development.

RESULTS

We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast.

CONCLUSION

These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.


DOI: 10.1186/1471-2164-11-674
PubMed: 21114852
PubMed Central: PMC3091788


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar.</title>
<author>
<name sortKey="Pechanova, Olga" sort="Pechanova, Olga" uniqKey="Pechanova O" first="Olga" last="Pechanova">Olga Pechanova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Mississippi State University, Mississippi State, MS 39762</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Chuan Yu" sort="Hsu, Chuan Yu" uniqKey="Hsu C" first="Chuan-Yu" last="Hsu">Chuan-Yu Hsu</name>
</author>
<author>
<name sortKey="Adams, Joshua P" sort="Adams, Joshua P" uniqKey="Adams J" first="Joshua P" last="Adams">Joshua P. Adams</name>
</author>
<author>
<name sortKey="Pechan, Tibor" sort="Pechan, Tibor" uniqKey="Pechan T" first="Tibor" last="Pechan">Tibor Pechan</name>
</author>
<author>
<name sortKey="Vandervelde, Lindsay" sort="Vandervelde, Lindsay" uniqKey="Vandervelde L" first="Lindsay" last="Vandervelde">Lindsay Vandervelde</name>
</author>
<author>
<name sortKey="Drnevich, Jenny" sort="Drnevich, Jenny" uniqKey="Drnevich J" first="Jenny" last="Drnevich">Jenny Drnevich</name>
</author>
<author>
<name sortKey="Jawdy, Sara" sort="Jawdy, Sara" uniqKey="Jawdy S" first="Sara" last="Jawdy">Sara Jawdy</name>
</author>
<author>
<name sortKey="Adeli, Ardeshir" sort="Adeli, Ardeshir" uniqKey="Adeli A" first="Ardeshir" last="Adeli">Ardeshir Adeli</name>
</author>
<author>
<name sortKey="Suttle, Jeffrey C" sort="Suttle, Jeffrey C" uniqKey="Suttle J" first="Jeffrey C" last="Suttle">Jeffrey C. Suttle</name>
</author>
<author>
<name sortKey="Lawrence, Amanda M" sort="Lawrence, Amanda M" uniqKey="Lawrence A" first="Amanda M" last="Lawrence">Amanda M. Lawrence</name>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
</author>
<author>
<name sortKey="Seguin, Armand" sort="Seguin, Armand" uniqKey="Seguin A" first="Armand" last="Séguin">Armand Séguin</name>
</author>
<author>
<name sortKey="Yuceer, Cetin" sort="Yuceer, Cetin" uniqKey="Yuceer C" first="Cetin" last="Yuceer">Cetin Yuceer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:21114852</idno>
<idno type="pmid">21114852</idno>
<idno type="doi">10.1186/1471-2164-11-674</idno>
<idno type="pmc">PMC3091788</idno>
<idno type="wicri:Area/Main/Corpus">002F96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F96</idno>
<idno type="wicri:Area/Main/Curation">002F96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F96</idno>
<idno type="wicri:Area/Main/Exploration">002F96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar.</title>
<author>
<name sortKey="Pechanova, Olga" sort="Pechanova, Olga" uniqKey="Pechanova O" first="Olga" last="Pechanova">Olga Pechanova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Mississippi State University, Mississippi State, MS 39762</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Chuan Yu" sort="Hsu, Chuan Yu" uniqKey="Hsu C" first="Chuan-Yu" last="Hsu">Chuan-Yu Hsu</name>
</author>
<author>
<name sortKey="Adams, Joshua P" sort="Adams, Joshua P" uniqKey="Adams J" first="Joshua P" last="Adams">Joshua P. Adams</name>
</author>
<author>
<name sortKey="Pechan, Tibor" sort="Pechan, Tibor" uniqKey="Pechan T" first="Tibor" last="Pechan">Tibor Pechan</name>
</author>
<author>
<name sortKey="Vandervelde, Lindsay" sort="Vandervelde, Lindsay" uniqKey="Vandervelde L" first="Lindsay" last="Vandervelde">Lindsay Vandervelde</name>
</author>
<author>
<name sortKey="Drnevich, Jenny" sort="Drnevich, Jenny" uniqKey="Drnevich J" first="Jenny" last="Drnevich">Jenny Drnevich</name>
</author>
<author>
<name sortKey="Jawdy, Sara" sort="Jawdy, Sara" uniqKey="Jawdy S" first="Sara" last="Jawdy">Sara Jawdy</name>
</author>
<author>
<name sortKey="Adeli, Ardeshir" sort="Adeli, Ardeshir" uniqKey="Adeli A" first="Ardeshir" last="Adeli">Ardeshir Adeli</name>
</author>
<author>
<name sortKey="Suttle, Jeffrey C" sort="Suttle, Jeffrey C" uniqKey="Suttle J" first="Jeffrey C" last="Suttle">Jeffrey C. Suttle</name>
</author>
<author>
<name sortKey="Lawrence, Amanda M" sort="Lawrence, Amanda M" uniqKey="Lawrence A" first="Amanda M" last="Lawrence">Amanda M. Lawrence</name>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
</author>
<author>
<name sortKey="Seguin, Armand" sort="Seguin, Armand" uniqKey="Seguin A" first="Armand" last="Séguin">Armand Séguin</name>
</author>
<author>
<name sortKey="Yuceer, Cetin" sort="Yuceer, Cetin" uniqKey="Yuceer C" first="Cetin" last="Yuceer">Cetin Yuceer</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Cell Wall (drug effects)</term>
<term>Cell Wall (metabolism)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Extracellular Matrix (drug effects)</term>
<term>Extracellular Matrix (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Regulatory Networks (drug effects)</term>
<term>Humans (MeSH)</term>
<term>Intracellular Space (drug effects)</term>
<term>Intracellular Space (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Proteome (metabolism)</term>
<term>Proteomics (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Water (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Antioxydants (métabolisme)</term>
<term>Eau (pharmacologie)</term>
<term>Espace intracellulaire (effets des médicaments et des substances chimiques)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Matrice extracellulaire (effets des médicaments et des substances chimiques)</term>
<term>Matrice extracellulaire (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Paroi cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéome (métabolisme)</term>
<term>Protéomique (MeSH)</term>
<term>RT-PCR (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Réseaux de régulation génique (effets des médicaments et des substances chimiques)</term>
<term>Stress physiologique (effets des médicaments et des substances chimiques)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Plant Proteins</term>
<term>Proteome</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Wall</term>
<term>Extracellular Matrix</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Intracellular Space</term>
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Espace intracellulaire</term>
<term>Matrice extracellulaire</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Extracellular Matrix</term>
<term>Intracellular Space</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Antioxydants</term>
<term>Espace intracellulaire</term>
<term>Feuilles de plante</term>
<term>Matrice extracellulaire</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Eau</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Droughts</term>
<term>Gene Expression Profiling</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Phylogeny</term>
<term>Proteomics</term>
<term>Reproducibility of Results</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Phylogenèse</term>
<term>Protéomique</term>
<term>RT-PCR</term>
<term>Reproductibilité des résultats</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21114852</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>674</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-11-674</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pechanova</LastName>
<ForeName>Olga</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hsu</LastName>
<ForeName>Chuan-Yu</ForeName>
<Initials>CY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Joshua P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pechan</LastName>
<ForeName>Tibor</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vandervelde</LastName>
<ForeName>Lindsay</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Drnevich</LastName>
<ForeName>Jenny</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jawdy</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Adeli</LastName>
<ForeName>Ardeshir</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Suttle</LastName>
<ForeName>Jeffrey C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lawrence</LastName>
<ForeName>Amanda M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tschaplinski</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Séguin</LastName>
<ForeName>Armand</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yuceer</LastName>
<ForeName>Cetin</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>11</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005109" MajorTopicYN="N">Extracellular Matrix</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21114852</ArticleId>
<ArticleId IdType="pii">1471-2164-11-674</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-11-674</ArticleId>
<ArticleId IdType="pmc">PMC3091788</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1999 Aug;19(4):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Oct 30;580(25):5947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19094241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1999 Nov;40(11):1177-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10635119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):364-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 May;5(5):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10785664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Jan 16;534(1-3):82-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12527365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Dec 17;294(5):1351-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Aug;219(4):610-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2110-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(3):257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):144-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Sep;70(13-14):1532-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2003 Jun;116(3):175-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Dec;5(18):4852-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16247735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Mar;86(3):908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2009 Sep;72(6):1687-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19473703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Sep;118(1):125-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Jun;18(6):411-417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Aug;84(4):1210-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:459-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17288534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 May;6(3):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15143438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jan 25;266(3):1564-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1899089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 May;70(7):856-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):904-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Nov;88(3):936-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2008 Dec;72(12):3197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19060393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Aug 12;209(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1990 Jul 1;269(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2198020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Jul;78(3):623-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 Nov 15;223(1):7-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7535022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2006 Sep;31(3):389-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17006022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Jun 25;56(12):4825-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18522406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Feb;269(3):893-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Jan;5(1):212-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15593128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jun;217(2):252-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12783333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Dec;62(6):797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17004015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2641-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19401410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2008 May;72(5):1143-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18460785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Feb;6(3):896-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16400686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(10):R80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15461798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Dec;14(12):1411-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11768536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Jul;81(3):802-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):452-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19005089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Nov;23(16):1113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Jul;61(4-5):687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16897484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2005;5:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Dec;6(24):6509-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2004;3:Article3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2008 Sep;389(9):1153-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18713002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Jan;103(2):181-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jun;65(12):1795-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15276438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2006 Apr;5(4):963-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Jun 15;412(3):563-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18341480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2008;8:47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Sep;83(18):6820-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2428042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):1846-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Apr;9(4):203-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15063871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Nov 18;79(4):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):135-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17233796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Mar 1;24(5):719-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2001 Feb 1;386(1):17-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11360996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1997 Jan;10(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9051728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2005;5:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Nov 11;337(1):61-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 May;102(1):173-179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jun;96(2):597-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1990;59:873-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2197993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2005 Jul-Aug;12(6):882-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16108723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMB Rep. 2008 Mar 31;41(3):259-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18377732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Feb;8(2):343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Jul;87(3):693-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Apr;107(4):1333-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7770527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1291-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Nov;26(11):1405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2007 Sep;6(9):3771-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Apr;24(4):1045-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17272678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Mar;95(3):669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2001 Aug;65(8):1883-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Nov;210(1):41-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Jul;28(4):677-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7647300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Mar;220(5):747-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15747145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Mar;69(3):609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2004 Jul-Aug;42(7-8):663-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):306-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(14):3813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Nov;47(5):581-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11725944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Nov;16(11):1030-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14601671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):1044-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Apr;1(4):447-457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Dec;118(4):1431-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Sep;10(7):861-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9304860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Mar 26;562(1-3):197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15044025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Mol Biol. 2008 Jun;17(3):261-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18477241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):890-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Feb;90(2):196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(15):4335-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Jan;103(2):359-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19001429</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État du Mississippi</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Adams, Joshua P" sort="Adams, Joshua P" uniqKey="Adams J" first="Joshua P" last="Adams">Joshua P. Adams</name>
<name sortKey="Adeli, Ardeshir" sort="Adeli, Ardeshir" uniqKey="Adeli A" first="Ardeshir" last="Adeli">Ardeshir Adeli</name>
<name sortKey="Drnevich, Jenny" sort="Drnevich, Jenny" uniqKey="Drnevich J" first="Jenny" last="Drnevich">Jenny Drnevich</name>
<name sortKey="Hsu, Chuan Yu" sort="Hsu, Chuan Yu" uniqKey="Hsu C" first="Chuan-Yu" last="Hsu">Chuan-Yu Hsu</name>
<name sortKey="Jawdy, Sara" sort="Jawdy, Sara" uniqKey="Jawdy S" first="Sara" last="Jawdy">Sara Jawdy</name>
<name sortKey="Lawrence, Amanda M" sort="Lawrence, Amanda M" uniqKey="Lawrence A" first="Amanda M" last="Lawrence">Amanda M. Lawrence</name>
<name sortKey="Pechan, Tibor" sort="Pechan, Tibor" uniqKey="Pechan T" first="Tibor" last="Pechan">Tibor Pechan</name>
<name sortKey="Seguin, Armand" sort="Seguin, Armand" uniqKey="Seguin A" first="Armand" last="Séguin">Armand Séguin</name>
<name sortKey="Suttle, Jeffrey C" sort="Suttle, Jeffrey C" uniqKey="Suttle J" first="Jeffrey C" last="Suttle">Jeffrey C. Suttle</name>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
<name sortKey="Vandervelde, Lindsay" sort="Vandervelde, Lindsay" uniqKey="Vandervelde L" first="Lindsay" last="Vandervelde">Lindsay Vandervelde</name>
<name sortKey="Yuceer, Cetin" sort="Yuceer, Cetin" uniqKey="Yuceer C" first="Cetin" last="Yuceer">Cetin Yuceer</name>
</noCountry>
<country name="États-Unis">
<region name="État du Mississippi">
<name sortKey="Pechanova, Olga" sort="Pechanova, Olga" uniqKey="Pechanova O" first="Olga" last="Pechanova">Olga Pechanova</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003371 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003371 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21114852
   |texte=   Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21114852" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020